Function Word Problems A	Problems Algebra II	pg. 150
11) $\$ 3150$	8) 5780 m	
3yrs 8 mos	11:45 A.M.	
\$ 36.75	9) $C(x)=\frac{5 x-160}{9}$	
120 mi	$37^{\circ} \mathrm{C}$	
\$ 235	-40°	
\$2650	150	
5. 275	-50	
6) 64 cm	$f(x)=\frac{1}{2} x+25$	
179 ks	80	
. 70 days		

2) The charge for a one-day rental of a car from Shurtz Car Rental Agency is $\$ 24$ plus 15 cents for each mile driven. $F(x)=m x+b$ input: miles $\quad F(x)=-15 x+24$
output: cost
a. If Jill drives 85 mi in one day, how much is the charge?

$$
\begin{aligned}
F(85) & =.15(85)+24 \\
& =12.75+24 \\
& =36.75
\end{aligned}
$$

b. If a one-day rental cost Jill $\$ 42$, how far did she drive?

$$
42=.15 x+24
$$

4) It costs Ace Electronics Company $\$ 1900$ to manufacture 10 VCRs and $\$ 2200$ to manufacture 16 VCRs. At this rate, what would be the cost of manufacturing 25 VCRs?

$$
\begin{aligned}
& \text { cause: amt VCRs built } \\
& \text { effect: cost } \quad(10,1900)(16,2200) \\
& V(x)=m_{x}+b
\end{aligned}
$$

$$
\begin{array}{ll}
P(x)=25 x+b & 110=25(3)+b \\
P(x)=25 x+35 & 110=75+b \\
P(8)=25(8)+35 & 35=b
\end{array}
$$

6) A load of 8 kg attached to the bottom of a coil spring stretches the spring to a length of 76 cm , and a load of 14 kg stretches it to a length of 85 cm Find the natural (unstretched) length of the spring. $=b$

$$
\begin{aligned}
& \text { input: mass } \\
& \text { output: stretch } \\
& H(x)=m x+b \\
& H(x)=\frac{3}{2} x+b \\
& 76=\frac{3}{2}(8)+b \\
& 76=12+b \\
& 64=b
\end{aligned}
$$

7) Fifteen days after Alan began a diet he weighed 176 lb . input: day After 45 days he weighed 170 lb .
a. How much did he weigh at the beginning of the diet? $\jmath=b$

b. At this rate, when will he weigh 165 lb ?

$$
\begin{aligned}
& D(x)=-\frac{1}{5} x+179 \\
& 165=-\frac{1}{5} x+179
\end{aligned}
$$

8) A climber left base camp at 5 A.M. to ascend a 7400 -meter peak. The climber gained altitude at a rate of $240 \mathrm{~m} / \mathrm{hr}$ and at 8 A.M. was at the 6500 -meter level.
a. Find the elevation of the basecamp, $(3,6500)$ input time climbing $z(x)=m x+b \quad(3,6500)$ output: elevation $z(x)=240 x+b$ $\begin{array}{ll}Z(x)=240 x+5780 \quad & 6500=240(3)+b \\ 6500=720+b\end{array}$ b. At what time did the climber reach the summit? $-b \leq 5>80 \mathrm{Ft}$ $7400=240 x+5780$
9) On a 50 question true-false test, a student received 3 points for each correct answer. For each incorrect answer, the student lost 1 point. For unanswered questions, no points are added or subtracted.
a. Find the best score possible.
b. Find the worst score possible.

$$
\begin{array}{ll}
3(50) & -1(50) \\
150 & -50
\end{array}
$$

c. Find the linear function that converts the raw score described above to a score from 0 to 100 . $(-50,0)(150,100)$
$f(x)=m x+6$
d. What score from 0 to 100 corresponds to a test result of 38 correct, 4 incorrect, and 8 omitted? $\quad F(110)=$

$$
38(3)-4+0(8)
$$

$$
114-4=110
$$

9) The side table shows the freezing and boiling points of water in degrees Celsius and degrees Fahrenheit. \square

	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$
Freezing	0°	32°
亚		

| | |
| :--- | :--- | :--- |

a. Find a linear function that gives ${ }^{\circ} \mathrm{C}$ in terms of ${ }^{\circ} \mathrm{F} . \quad(32,0)$ $C(F)=m F+b \quad(212,100)$ $C(F)=\frac{5}{9} F+6$

b. At what ${ }^{\circ} \mathrm{C}$ temperature corresponds to $98.6^{\circ} \mathrm{F}$?
$C=\frac{5}{9}(98.6)-\frac{160}{9}$
$0=\frac{5}{9}(32)+b$
$-\frac{160}{9}=b$
c. At what temperature do the two scales give the same reading? input output
$f=\frac{5}{9} f-\frac{160}{9}$

